

CW applications and plans for SMTF

J. N. Corlett

LBNL

SMTF Collaboration Meeting Fermilab October 2005

Applications for B=1 cw scrf

- Stable rf fields
- · Inherently small perturbative effects on the beam from wakefields
- Reduced rf drive power requirements (cf. warm)
- · Storage rings
- Energy recovery linacs (ERL's)
- Recirculating linacs
- Single-pass linacs

- · bunch manipulation in storage ring light sources
- · high flux/brightness synchrotron light sources
- · free-electron lasers
- · electron-hadron colliders
- · e+ e- colliders
- · hadron colliders
- · electron cooling
- · nuclear physics facilities
- · Compton scattering
- · THz CSR sources

Applications for $\beta=1$ cw scrf - contd.

- $\tau \approx 2.4$ s for unloaded 1.3 GHz structures, $Q_0 \sim 10^{10}$
 - Overcoupling reduces filling time
 - Beam loading may provide conditions closer to a match
 - · Many applications do not have heavy beam loading
- \cdot Q_{ext} , coupling, and filling time are limited primarily by the ability to provide feedback of the system against field fluctuations induced by microphonics
 - Q_{ext} of 2.6x10⁷ for the TESLA cavities
 - $\tau \approx$ milliseconds
- Applications of interest discussed here require continuous bunch rates
 >> 1-10 ms time constant

Operate in continuous wave (cw) mode

CW scrf-based proposals and facility concepts

- European X-ray FEL: single-pass linac light source
- BESSY FEL: single-pass linac light source
- KAERI: ERL light source
- NHMFL: ERL light source
- 4GLS: ERL light source
- BNL e-RHIC: ERL for e⁻ cooling
- · CEBAF: 12 GeV upgrade
- TJNAF: ERL FEL
- · Cornell / TJNAF: ERL light source
- KEK-B: crab cavities
- · ALS (LBNL) and APS (ANL): storage ring deflecting cavities
- LHC: crab cavities
- · Arc-en-Ciel: recirculating linac / ERL light source
- BNL e-RHIC: ERL light source
- Max-lab: ERL light source
- BINP: ERL light source
- LBNL: recirculating linac light source
- MIT-Bates: single-pass linac light source

CW operation with TESLA technology

	TESLA	CW (e.g.)
E _{acc} [MV/m]	23.4	20
400 -		
Operation mode	Pulsed	CW
Pulse length [ms]	1.37	CW
Repetition rate [Hz]	5	CW
Duty factor [%]	0.685	100
Beam current [mA]	9.5	0.03
Bandwidth [Hz]	520	50
Q_0	10 ¹⁰	1010
Q _{ext}	2.5×10 ⁶	2.6×10 ⁷
RF power/ cavity	1.85 MW	10 kW
Dynamic load at 2K		
per cavity [W]	0.4	42
, , , ,		

CW scrf thermal management

Heat transport from cavity

Input coupler

Example: modifications of TESLA design for cw operations

- Increase number of feed pipes between the rf cavity helium tank and the two-phase helium stand pipe
- Position the helium feeds near ends of the helium tank
- Increase the inside diameter of the helium tank
- Increase the liquid helium feed pipe diameter
- Increase the two-phase helium header pipe diameter

- Increase Q_a
 - Improved materials processing
 - Lower frequency
 - Reduced temperature
 - Pressure control, magnetic shielding, cryo system, costs, ...

Feedback control of tuning variations

- · Tight coupling minimizes RF power requirements
 - \cdot $\beta \sim 1$ for power optimization
 - · May be limited by feedback bandwidth required for stability
- Random tuning variations
 - Slow perturbations e.g. from variations in He pressure
 - · Faster perturbations from microphonics at acoustic frequencies structural resonances
- Tight phase and amplitude control
- \cdot $\Delta \phi$ < 0.01° , $\Delta V/V$ <10⁻⁴
 - FEL output pulse energy stability
 - Synchronization, seeding

$$P_g = \frac{P_c}{4\beta} \left\{ (1 + \beta + b)^2 + \left[2Q \frac{\Delta f}{f} - b \tan(\Psi_B) \right]^2 \right\}$$

$$\beta_c = \frac{Q_0}{Q_{ext}}; \ b = \frac{P_{beam}}{P_C}$$

High Q_o reduces power dissipation in liquid helium

- · SMTF goal for CW systems
 - \cdot Q_o 3×10^{10} at 20 MV/m
 - Installed cryomodule

$$R_{BCS} \propto \frac{1}{T} f^2 e^{-\frac{a}{T}}$$

CW scrf accelerating structures under development

Superconducting rf linac

- Small perturbations from wakefields
 - · Large iris aperture
- · CW operation
 - High gradient (~20 MV/m)
 - · High repetition rate
 - · High beam power
 - Flexible pulse rate
 - Flexible pulse pattern
 - · Highly stable cavity fields
 - · RF feedback and controls
 - Electron beam energy and timing st
- HOM suppression
- Energy recovery option

J-Lab ERL FEL

SMTF goals to demonstrate cw accelerating cryomodules

- · E_{accelerating} ≥ 20 MV/m
- $\cdot Q_0 \ge 3 \times 10^{10}$
- $Q_{ext} \ge 2.5 \times 10^7$ for low beam loading applications
- High stability and control of microphonics, with a goal of phase error < 0.1° and amplitude error < 10^{-4}
- · Wakefield suppression for haevily loaded applications
 - · HOM's and LOM's
- · The above performance in the presence of beam
 - · Modest average current but high peak current
 - · ~ nC, ~ 10 kHz
 - ·1 nC, repetition rate ~ 10 kHz (c.f. ~100 MHz in storage rings)
- · These parameters are not addressed in existing cw scrf programs
- · Extends the reach of the existing US program in cw scrf

Infrastructure for cw accelerating cryomodule development

- · RF power
 - · L-band 1.3 GHz (ILC)
 - \cdot ~ 15 kW per m @ 20 MVm⁻¹
 - 50 Hz bandwidth
 - IOT or klystron (2 required initially, one for each cavity)
 - · dc power supply
 - · drive amplifier
- Space for other rf hardware at different frequencies
 - To test harmonic cavities for 3rd generation light sources
- · Cryogenic fluids & transport
 - 120 W @ 2 K (40 W @ 1.8 K) (includes safety factor 1.5)
 - · 10 W @ 4.5 K
 - Pumps to reach He vapor pressure corresponding to 1.8K

SRF "harmonic" structures under development

"Harmonic" cavities

Operate at a higher harmonic of the accelerating RF frequency

- Monople mode cavities
 - Linearize longitudinal phase space in FNAL bunch compressors
 - Provide potential well distrortion for bunch length control in storage rings
- Dipole mode cavities
 - Deflecting cavities for electron beam diagnostics and for bunch manipulation

BES light source application X-ray pulse compression via vertical chirp

SMTF near-term goals to demonstrate CW deflecting cavity cryomodules

- · Light source applications
 - · ALS (Berkeley), APS (Argonne), etc.
- · Dipole mode cavities give head-tail kick to beam
 - · "Crabbing"
 - · Allows use of the small vertical dimension in a storage ring beam
 - · Generate "ultrafast" x-ray pulses
- · Synergies with existing Basic Energy Sciences (BES) facilities needs
- ALS and APS pursuing these concepts
 - · Propose SMTF as test-bed for superconducting cryomodules
- · SMTF infrastructure requirements for deflecting cavities to be determined

Cavity HOM and wakefields

- Wakefields may persist for long periods
- · Many modes in multi-cell structures
 - · Higher-order and lower-order modes
- · May present problems with collective effects
 - High-current applications, multi-bunch effects, BBU
 - Single-bunch emittance growth
 - Energy spread
- · Control of cavity fields under beam loading
 - Transient behavior
- Beam tests important

Beam tests for cw scrf test facility

- · High bunch rate desirable
 - · Study transient effects with 1 nC bunches
- Bunch lengths of 1 10 ps
- Transverse emittance ~ mm-mrad (normalized)
 - · Requires gun and injector development
 - · Laser, rf gun cavity, modulator
 - Could be superconducting gun
- · High average current measurements may be made at other facilities (e.g. TJNAF, BNL)

Summary - cw possibilities at SMTF

- SMTF cw component would provide capabilities to research parameters not addressed by existing programs
- · Major applications in existing and future light sources
- · "ILC"-like accelerating cavities for linac-based facilities
 - · 20 MVm⁻¹ cw
 - $Q_0 > 3 \times 10^{10}$
 - $Q_{ext} > 2.5 \times 10^7$
- · Harmonic & deflecting cavities for existing light sources
- · Beam tests provide additional performance validation
- · Initial focus on deflecting cavities for light-source applications
 - Aligns with needs of existing BES facilities ALS and APS
 - Developing proposal to submit to BES

SRF technologies under development

SRF electron gun

- · Flexible pulse format
- · High repetition rate
 - · Potential for high beam power
- · Low emitance
- Low energy spread
- · Stable fields
- · Lock photocathode laser and RF phase
- · Photocathode laser
- · Cathode

BESSY / PITZ http://www.bessy.de/front_content.php?idcatart=241